
# Selective Synthesis and Metallochromic Properties of Pyrrolylated Quinoline-5,8-diones

Katsuhira Yoshida,<sup>\*</sup> Yasunobu Ueno, Masaru Suzuki, Yukihiro Yoshida and Yuji Kubo Department of Chemistry, Faculty of Science, Kochi University, Akebono-cho, Kochi 780, Japan

Quinoline-5,8-dione **5** reacted with 1-methylpyrrole in acetic acid to give 6- and 7-(1-methylpyrrol-2-yl)quinoline-5,8-diones, one of which (6-isomer) showed remarkable metallochromic behaviour. Selective synthesis of the 6-isomer from **5** was achieved by addition of metal salts.

Quinoline-5,8-dione syntheses have attracted much interest because of their interesting physiological and colouring properties. Earlier,<sup>1</sup> we reported that various 6-substituted quinoline-5,8-diones had been conveniently synthesized by regioselective 6-amination and 6-arylation of quinoline-5,8dione 5 promoted by metal ions. We also found that products with strong electron-donating 6-substituents are markedly metallochromic:<sup>2</sup> the first absorption bands are markedly shifted to longer wavelengths, with a concomitant large increase in the absorption intensity, upon metal chelation. The resulting chelates have an intense absorption band in the near-IR region. Also, we have recently found<sup>3</sup> that the reaction of 1,4naphthoquinone 1 and 1-methylpyrrole 2 in acetic acid allows the selective synthesis of either the mono- or bis-(1,4-dioxo-2naphthyl)pyrroles, 3 or 4, by addition of  $Cu(OAc)_2 \cdot H_2O$ , and changing the molar ratio of the starting materials.

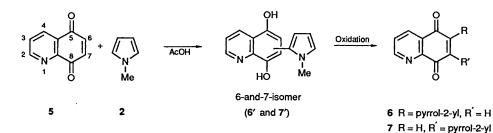


In continuation of these studies, the present work was aimed at synthesizing pyrrolylated quinoline-5,8-diones, the metallochromic properties of which are also investigated.

### **Results and Discussion**

Synthesis of Pyrrolylated Quinoline-5,8-diones.—As in the reaction of 1,4-naphthoquinone 1 with 1-methylpyrrole 2, it was found that the molar ratio of the starting materials significantly affected the distribution of the products<sup>3</sup> (see Scheme 1). In this work, we treated quinoline-5,8-dione 5 with 2 in acetic acid in the molar ratio [5]:[2] = 1:8 in order to avoid the formation of bis(5,8-dioxoquinolyl)pyrroles: the results are summarized in Table 1. In the absence of metal salts, the reaction gave a mixture of isomeric pyrrolylquinoline-5,8-diones and 6- and 7-(1-methylpyrrol-2-yl)quinoline-5,8-dione, 6 and 7, in low yields (Run 1), the subsequent oxidation of the initial hydroquinone products 6' and 7' to 6 and 7 being less than smooth in the presence of air (Scheme 2). Increased yields of 6 and 7 were

| Table 1   | The reaction of quinoline-5,8-dione 5 with 1-methylpyrrole 2 |
|-----------|--------------------------------------------------------------|
| in acetic | acid                                                         |


| Run            | Metal salt                           | PbO <sub>2</sub> | Time<br>(min) | Product (%) <sup>d</sup> |    |
|----------------|--------------------------------------|------------------|---------------|--------------------------|----|
|                |                                      |                  |               | 6                        | 7  |
| 1 ª            | None                                 | No               | 180           | 20                       | 9  |
| 2ª             | None                                 | Yes              | 180           | 33                       | 20 |
| 3ª             | Ni(OAc),•4H <sub>2</sub> O           | Yes              | 60            | 47                       | 0  |
| 4 <sup>b</sup> | Cu(OAc), H <sub>2</sub> O            | No               | 5             | 49                       | 0  |
| 5 *            | FeCl <sub>3</sub> .6H <sub>2</sub> O | No               | 5             | 65                       | 0  |

<sup>a</sup> Reactant 5 (3.14 mmol) was stirred with 2 (25.12 mmol) in acetic acid (50 cm<sup>3</sup>) in the absence or in the presence of Ni(OAc)<sub>2</sub>·4H<sub>2</sub>O (3.14 mmol) in an open flask at 30 °C. <sup>b</sup> The reaction was conducted in a separatory funnel at room temperature (see Experimental section). <sup>c</sup> After the starting material 5 had been consumed, PbO<sub>2</sub> (3.14 mmol) was added to the reaction mixture to oxidize the hydroquinone products 6' and 7' to the final quinone products 6 and 7. <sup>d</sup> Isolated yield after column chromatography.

obtained when the reaction mixture was treated with PbO<sub>2</sub> (Run 2). However, in the presence of Ni(OAc)<sub>2</sub>·4H<sub>2</sub>O, Cu(OAc)<sub>2</sub>· H<sub>2</sub>O, or FeCl<sub>3</sub>·6H<sub>2</sub>O, the reaction gave exclusively the 6-isomer 6 in moderate yields (Runs 3–5). Similar, selective 6-substitution of 5 promoted by metal ions have previously been reported for the reaction of 5 with various amines.<sup>1,4</sup> The formation of a metal chelate in which the 1-nitrogen atom and the 8-carbonyl group of 5 coordinate to the metal ion was considered to promote the 6-substitution. Although in the addition of Ni(OAc)<sub>2</sub>·4H<sub>2</sub>O subsequent oxidation with PbO<sub>2</sub> was required, with Cu(OAc)<sub>2</sub>·H<sub>2</sub>O or FeCl<sub>3</sub>·6H<sub>2</sub>O the final product 6 was directly obtained in satisfactory yield for a reaction time of only 5 min at room temperature. In the last mentioned cases, the metal ions act both as chelating and oxidizing agents in the regioselective 6-pyrrolylation.

Physical and Metallochromic Properties of the Two Isomers 6 and 7.—The physical properties of, and the analytical data for, the two isomeric products 6 and 7 are summarized in Table 2. The <sup>1</sup>H NMR, IR and UV–VIS spectra of the two isomers are too closely similar for them to be distinguished from their spectral data. Fig. 1 shows the <sup>1</sup>H NMR chemical shift changes of 6-H (or 7-H), 3'-H, and the protons of the CH<sub>3</sub> group of 6 and 7 induced by addition of Eu(fod)<sub>3</sub> as a chemical shift reagent, the europium ion being coordinated between the 1-nitrogen and 8-carbonyl group. The orders of magnitude of the chemical shifts are 7-H > 3'-H ~ CH<sub>3</sub> in 6, 3'-H > CH<sub>3</sub> ~ 6-H in 7, and 7-H  $\ge$  6-H. These results are compatible with 6 and 7 being the 6- and 7-pyrrolylated isomers, respectively.

In an investigation of the metallochromic behaviour of the two isomers upon chelation, markedly different spectral changes were observed. For example, Fig. 2 shows the spectral



Scheme 2

Table 2The analytical and physical data of the two isomeric products6 and 7 (see Fig. 1 for numbering scheme)

|                                              | 6-Isomer 6      |          | 7-Isomer <b>7</b>                         |
|----------------------------------------------|-----------------|----------|-------------------------------------------|
| <u>М.р. (°С)</u>                             | 167–168         |          | 137–138                                   |
| $v_{max}(KBr)/cm^{-1}$                       | 1671, 1645 (    | C=O)     | 1689, 1641 (C=O)                          |
| $\lambda_{max}$ (MeCN)/nm ( $\epsilon_{max}$ | nax) 484 (5300) |          | 484 (5000)                                |
| δ <sub>H</sub> (CDCl <sub>3</sub> )          |                 |          |                                           |
| 3.71 (3 H, s, CH <sub>3</sub> ), 6.          | 27 (1 H, dd, J  | 3.71 (3  | H, s, CH <sub>3</sub> ), 6.27 (1 H, dd, J |
| 2.6, 3.9, 4'-H), 6.75 (                      |                 |          | , 4'-H), 6.73 (1 H, dd, J 1.8,            |
| 3.9, 3'-H), 6.91 (1 H,                       | dd, J 1.8, 2.6, | 3.9, 3'- | H), 6.90 (1 H, dd, J 1.8, 2.6,            |
| 5'-H), 7.02 (1 H, s,                         |                 | 5'-H),   | 6.94 (1 H, s, 6-H), 7.67 (1               |
| H, dd, J 4.6, 8.0, 3-H                       | H), 8.47 (1 H,  | H, dd,   | J 4.6, 8.0, 3-H), 8.42 (1 H,              |
| dd, J 1.8, 8.0, 4-H) a                       | nd 9.03 (1 H,   | dd, J 1  | .8, 8.0, 4-H) and 9.01 (1 H,              |
| dd, J 1.8, 4.6, 2-H)                         |                 | dd, J 1  | .8, 4.6, 2-H)                             |
| Found % (Calc. %)                            |                 |          |                                           |
| C, 70.2 (70.58)                              |                 | C. 70.5  | 5 (70.58)                                 |
| H, 4.4 (4.48)                                |                 |          | 5 (4.48)                                  |
| N, 11.9 (11.60)                              |                 |          | 3 (11.60)                                 |
| Mass $(m/z)$                                 |                 |          |                                           |
| 238 (M <sup>+</sup> )                        |                 | 238      | $B(M^{+})$                                |

changes observed upon addition of Cu(ClO<sub>4</sub>)<sub>2</sub>.6H<sub>2</sub>O to MeCN solutions of 6 and 7. In the former, an absorption band around 484 nm due to the free ligand decreased whilst a new and intense absorption band appeared around 598 nm. In the latter, complexation caused a bathochromic shift of the absorption band but a decrease in intensity  $[R(\varepsilon_{max}) < 1$ , see Table 3]. The two isomers are, therefore, easily distinguishable by a comparison of the spectral changes induced upon chelation. Similar results have previously been observed for 6-and 7substituted quinoline-5,8-diones 1,2,5 and related compounds.6 Isosbestic points were observed in both cases, which indicated the presence of a simple equilibrium in the solution. The continuous variation method indicated the formation of a 1:1 Cu<sup>II</sup>-(6 or 7) complex in MeCN. Similar differences in the spectral changes between 6 and 7 were also observed in the formation of complexes with other metal salts. Table 3 summarizes the spectral data for the metal complexes with 6 and 7 in MeCN.

# Experimental

*Measurements.*—M.p.s are uncorrected. UV and VIS spectra were measured with a JASCO Ubest-30 spectrophotometer equipped with a temperature controller (JASCO EHC-363). <sup>1</sup>H NMR spectra were recorded on a Hitachi Model R-90H spectrometer with TMS as the internal standard and IR spectra on a JASCO FT/IR 5000 spectrometer for KBr pellets. Mass spectra were run on a Shimadzu QP-1000 spectrometer and elemental analyses were measured on a Yanaco CHN recorder MT-3. Thin layer chromatography was performed on silica gel (Merck Kieselgel 60).

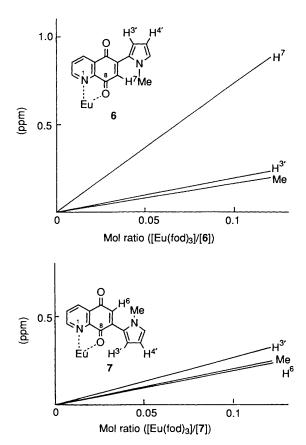



Fig. 1 Chemical shift changes by addition of Eu(fod)<sub>3</sub>

*Materials.*—Quinoline-5,8-dione 5 was prepared according to a literature procedure.<sup>7</sup> Ni(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O<sup>8</sup> and Cu(ClO<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O<sup>9</sup> were prepared by the literature methods. Other metal salts were reagent grade and were used without further purification.

Reaction of 5 with 2 in the Absence or in the Presence of  $Ni(OAc)_2.4H_2O.$ —A solution of 5 (0.5 g, 3.14 mmol) in acetic acid (40 cm<sup>3</sup>) was added to a solution of 2 (25.12 mmol) in acetic acid (10 cm<sup>3</sup>) with stirring in the absence or in the presence of  $Ni(OAc)_2.4H_2O$  (3.14 mmol) in an open flask at 30 °C. The reaction was monitored by TLC analysis. After the starting material 5 had been consumed, water (50 cm<sup>3</sup>) and PbO<sub>2</sub> (3.14 mmol) were added to the reaction mixture and the whole repeatedly extracted with chloroform. The combined extracts were washed with aqueous sodium carbonate and water, dried (Na<sub>2</sub>SO<sub>4</sub>) and then concentrated under reduced pressure. The residue was separated by column chromatography (silica gel: Wakogel C-300) using 1,2-dichloroethane–ethyl acetate (10:1) as eluent. The yields are summarized in Table 1.

Table 3 Spectral data for complex formation between metal salts and substrates 6 and 7 in MeCN

| Ligand                                         |                                                       | Mole quotient <sup>a</sup><br>[metal] | Complex (metal-ligand, 1:1)         |                                |                                   |
|------------------------------------------------|-------------------------------------------------------|---------------------------------------|-------------------------------------|--------------------------------|-----------------------------------|
| $\overline{\lambda_{max}/nm} (\epsilon_{max})$ | Metal salt                                            | [ligand]                              | $\lambda_{max}/nm~(\epsilon_{max})$ | $\Delta\lambda_{max}{}^{b}/nm$ | R(E <sub>max</sub> ) <sup>c</sup> |
|                                                | Cu(ClO <sub>4</sub> ) <sub>2</sub> •6H <sub>2</sub> O | 2.0-2.4                               | 598 (14 200)                        | 114                            | 2.68                              |
| 6 484 (5300)                                   | Ni(ClO <sub>4</sub> ), 6H,0                           | 2.0-2.4                               | 576 (11 900)                        | 92                             | 2.25                              |
|                                                | FeCl <sub>3</sub> ·6H <sub>2</sub> O                  | 5.0-6.0                               | 626 (13 000)                        | 142                            | 2.45                              |
| 7 484 (5000)                                   | Cu(ClO <sub>4</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 2.4-2.8                               | 522 (3200)                          | 38                             | 0.64                              |

<sup>*a*</sup> Molar ratio range in which the maximum and constant absorbance were obtained (see Fig. 2). <sup>*b*</sup>  $\Delta \lambda_{max} = \lambda_{max}(complex) - \lambda_{max}(free ligand)$ . <sup>*c*</sup>  $R(\varepsilon_{max}) = \varepsilon_{max}(complex)/\varepsilon_{max}(free ligand)$ .

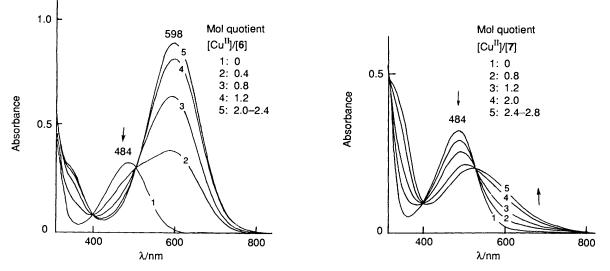



Fig. 2 Spectral changes upon addition of  $Cu(ClO_4)_2$ ·6H<sub>2</sub>O to MeCN solutions of ligands 6 and 7. [6] = [7] = 6.25 × 10<sup>-5</sup> mol dm<sup>-3</sup>

Reaction of 5 with 2 in the Presence of  $Cu(OAc)_2 \cdot H_2O$  or  $FeCl_3 \cdot 6H_2O$ .—The reaction was conducted in a separatory funnel at room temperature. To the metal salt (3.14 mmol) dissolved in 20% aqueous acetic acid (60 cm<sup>3</sup>) was quickly added 2 (25.12 mmol) and then 5 in chloroform (50 cm<sup>3</sup>). The mixture was vigorously shaken for 5 min after which the chloroform layer was quickly removed; the aqueous layer was then further extracted with chloroform (2 × 30 cm<sup>3</sup>). The combined extracts were washed with aqueous sodium carbonate and water, dried (Na<sub>2</sub>SO<sub>4</sub>) and then concentrated under reduced pressure. The crude products were separated by column chromatography (silica gel: Wakogel C-300) using 1,2-dichloroethane–ethyl acetate (10:1) as eluent. The yields are summarized in Table 1.

## Acknowledgements

The authors thank the Hodogaya Chemical Co., Ltd. for mass spectral and elemental analyses.

#### References

- 1 K. Yoshida, M. Ishiguro, H. Honda, M. Yamamoto and Y. Kubo, Bull. Chem. Soc. Jpn., 1988, 61, 4335.
- 2 K. Yoshida, M. Ishiguro and Y. Kubo, Chem. Lett., 1987, 2057.
- 3 K. Yoshida, Y. Yoshida and Y. Kubo, Chem. Express, 1990, 5(10), 749.
- 4 Y. T. Patt, J. Org. Chem., 1962, 27, 3905.
- 5 K. Yoshida and Y. Kubo, Dyest. Chem., 1989, 34, 16.
- 6 K. Yoshida, T. Koujiri, E. Sakamoto and Y. Kubo, Bull. Chem. Soc. Jpn., 1990, 63, 1748.
- 7 Y. T. Patt and N. L. Drake, J. Am. Chem. Soc., 1960, 82, 1155.
- 8 H. Ito, Nippon Kagaku Zashi, 1956, 77, 1383.
- 9 Nippon Kagakukai, 'Shin Jikken Kagaku Koza', Maruzen Co., Tokyo, 1977, 8, 914.

Paper 2/03248A Received 22nd June 1992 Accepted 17th July 1992